
J. Fluid Mech. (2007), vol. 570, pp. 177–215. c© 2007 Cambridge University Press

doi:10.1017/S0022112006002941 Printed in the United Kingdom

177

Two-dimensional simulation of unsteady heat
transfer from a circular cylinder in crossflow

By SALEM BOUHAIRIE AND VINCENT H. CHU
Department of Civil Engineering and Applied Mechanics, McGill University,
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The heat transfer from the surface of a circular cylinder into a crossflow has been
computed using a two-dimensional model, for a range of Reynolds numbers from
Re = 200 to 15 550. The boundary-layer separation, the local and overall heat-transfer
rates, the eddy- and flare-detachment frequencies and the width of the flares were
determined from the numerical simulations. In this range of Reynolds numbers, the
heat-transfer process is unsteady and is characterized by a viscous length scale that is
inversely proportional to the square root of the Reynolds number. To ensure uniform
numerical accuracy for all Reynolds numbers, the dimensions of the computational
mesh were selected in proportion to this viscous length scale. The small scales
were resolved by at least three nodes within the boundary layers. The frequency of
the heat flares increases, and the width of each flare decreases, with the Reynolds
number, in proportion to the viscous time and length scales. Despite the presence of
three-dimensional structures for the range of Reynolds numbers considered, the two-
dimensional model captures the unsteady processes and produced results that were
consistent with the available experimental data. It correctly simulated the overall, the
front-stagnation and the back-to-total heat-transfer rates.

1. Introduction
The release of thermal energy from a heated circular cylinder into a crossflow is

a problem of advection and diffusion that depends on the Reynolds and Prandtl
numbers. At high Reynolds numbers, the thermal energy is trapped in the thin
boundary layers on both the front and back surfaces of the cylinder. The subsequent
release of thermal energy is through the separation of the boundary layers from the
back surface and the formation of narrow pathways directed away from the cylinder
wall. The challenge in numerical solution of the problem is to resolve the steep thermal
and velocity gradients on the surface of the cylinder and, at the same time, to calculate
the heat transfer through the narrow pathways with equal accuracy. Past heat-transfer
calculations of the flow around a circular cylinder were conducted typically up to
a Reynolds number of 200 (Dennis, Hudson & Smith 1968; Sunden 1983; Patnaik,
Narayana & Seetharamu 1999; Hatanaka & Kawahara 1995; Karniadakis 1988;
Lange, Durst & Breuer 1998). Recent calculations have been pushed to a Reynolds
number as high as 3900 (Xia & Karniadakis 1997). There have not been any significant
attempts to calculate the heat-transfer rate at higher Reynolds numbers. However,
the velocity field around the circular cylinder has been calculated at significantly
higher Reynolds numbers (see table 1). Highly accurate numerical calculations for
the velocity have been conducted using the streamfunction and vorticity formulation
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Authors Re Setup Results

heat-transfer calculations

Wood (1968) 0.3 2D full ψ, ω, T , Nu
Dennis et al. (1968) 0.01 ∼ 40 2D half ψ, ω, T , Nu
Sunden (1983) 5 ∼ 40 2D half ψ, ω, T , Nu

Karniadakis (1988) 20 ∼ 200 2D full T (t), Nus , Nu(θ ), Nu
Hatanaka & Kawahara (1995) 100 2D full u, v, p, T , St(Ri)
Patnaik et al. (1996) 200 2D full u, v, p, T , Nu, St
Lange et al. (1998) 10−4 ∼ 200 2D full u, v, p, T , Nu
Xia & Karniadakis (1997) 500, 3900 3D full u, v, w, p, ω, T , Nu
Pinol & Grau (1998) 60, 100, 200 2D full ψ, ω,CD,CL, St, Nu
Patnaik et al. (1999) 20–40 2D full u, v, p, T , St(Ri), Nu(Ri)
Nakamura & Kamemoto (2001) 200–1000 2D full ω, T , Nu

flow calculations

Thom (1933) 10, 20 2D half ψ, ω,Cp

Payne (1958) 40, 100 2D half ω,CD

Kawaguti & Jain (1966) 1 ∼ 100 2D half ψ, ω,Cp, CD

Son & Hanratty (1969) 40, 200, 500 2D half ψ, ω,CD

Dennis & Chang (1969) 40 2D half ψ, ω,Cp, CD

Jain & Rao (1969) 40, 60, 100, 200 2D half ψ, ω,Cp, CD

Thoman & Szewczyk (1969) 1 ∼ 3 × 105 2D full ψ, ω,CD, St
Dennis & Chang (1970) 5 ∼ 100 2D half ψ, ω,CD

Dennis & Staniforth (1971) 100, 500, 1000, 10 000 2D half ψ, ω,CD

Jordan & Fromm (1972) 100, 400, 1000 2D full ψ, ω,CD, θs

Collins & Dennis (1973a) 100, 200 2D half ψ, ω,CD, θs

Collins & Dennis (1973b) 1 ∼ ∞ 2D half ψ, ω,Cp, θs

Patel (1976) 60 ∼ 600 2D half ψ, ω,CD, θs

Ta Phuoc Loc (1980) 300, 550, 1000 2D half ψ, ω,CD

Ta Phuoc Loc & Bouard (1985) 3000 ∼ 9500 2D half ψ, ω
Braza et al. (1986) 100, 200, 1000 2D full u, v, p, θs

Smith & Stansby (1988) 250 ∼ 105 2D half ψ, ω,CD, θs

Sa & Chang (1990) 20, 100 2D half ψ, ω,CD, St
Song & Yuan (1990) 1.4 × 105 ∼ 8.4 × 106 2D full u, v, p, CD

Engelman & Jamnia (1990) 100 2D full u, v, p, CD

Tezduyar & Liou (1991) 100 2D full ψ, ω,CD

Behr et al. (1991) 100 2D full ψ, ω,CD

Karniadakis & Triantafyllou 200 ∼ 500 3D full u, v, w, p, St
(1992)

Behr et al. (1995) 100 2D full u, v, p
Mittal (1996) 3900, 5000 3D full u, v, w, p, Cp, CD, St
Nair & Sengupta (1996) 10 000 2D full ψ, ω,CD

Jordan & Ragab (1998) 5600 3D full LES u, v, w, p, Cp, CD, θs, νsgs

Persillon & Braza (1998) 100 ∼ 300 3D full DNS u, v, w, p
Zhang & Dalton (1998) 200 3D full u, v, w, p, CD, CL, St
Mittal (2001) 1000 3D full u, v, w, p, CD, CL, St
Singh & Mittal (2003) 105 ∼ 106 2D full u, v, p, CD, CL, k, E(k)
Singh & Mittal (2004) 100 ∼ 107 2D full u, v, p, k, E(k)

Table 1. Numerical calculations of heat transfer and flow around a circular cylinder. 2D,
two-dimensional simulation; 3D, three-dimensional simulation; half, half-cylinder; full, full
cylinder; LES, large eddy simulation; DNS, direct numerical simulation.
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by Daube & Ta Phouc Loc (1978) and by Ta Phouc Loc & Bouard (1985), for flow
past a half-circular cylinder at Reynolds numbers as high as 9500. Large-eddy
simulation (LES) using a three-dimensional LES model was conducted by Jordan &
Ragab (1998) for Re = 5600. Karniadakis & Triantafyllou (1992), Persillon & Braza
(1998) and Mittal (2001) have conducted direct numerical simulation (DNS) of the
turbulent flow in the wake of the circular cylinder, up to a Reynolds number of
1000. More recently, Dong & Karniadakis (2005) performed three-dimensional DNS
for drag and lift coefficients up to a Reynolds number as high as Re= 10 000.

Since the heat-transfer rate is proportional to the temperature gradients, the
computation grid must be sufficiently refined to resolve these steep gradients on
the surface of the cylinder. The higher the Reynolds number, the finer is the
requirement for the computation grid. The success of the simulation also depends
on the implementation of the boundary conditions. In this study, the size of the
grid was selected to be proportional to the boundary-layer thickness. Therefore, the
grid becomes more refined with increasing Reynolds number. The wall vorticity was
calculated using a compact finite-difference scheme to the third order of accuracy.
The simulations of the heat-transfer process were conducted for Reynolds numbers
Re = 200, 1000, 5000, 8290 and 15 550, with Prandtl number Pr= 0.7. The local and
overall heat-transfer rates, the back-to-total heat-transfer ratios, the angles of flow
separations and the eddy- and flare-detachment frequencies were determined from
the simulations.

Most laboratory heat-transfer studies in the past have been concerned with the
overall heat-transfer coefficient and its correlations with the Reynolds and Prandtl
numbers (Hilpert 1933; Eckert & Soehngen 1952; Dimopoulos & Hanratty 1968;
Eckert & Drake 1972; Zukauskas & Ziugzda 1986). However, Eckert & Soehngen
(1952), Schmidt & Wenner (1943), Krall & Eckert (1973) and Adachi, Okamoto
& Adachi (1979) were able to obtain the circumferential distribution of the local
coefficient from their measurements. A comprehensive state-of-the-art review is given
in the two-volume book by Zdrakovich (1997, 2003). The measurements by Schmidt
& Wenner (1943) were most significant, covering a wide range of Reynolds numbers
from Re= 5000 to 426 000. They found that the back–side heat-transfer rate increased
continuously with Reynolds number. At high Reynolds numbers, the heat-transfer rate
on the back surface was observed to be higher than the rate at the front. As it will be
shown from the two-dimensional calculations presented in this paper, their observation
is related to the formation of thermal layers on the back surface. The thermal layers
are unsteady, unlike the boundary layer developing from the front. However, they
play the same role in keeping the thermal energy close to the wall. Despite the onset
of three-dimensionality in this range of Reynolds numbers, the two-dimensional
model on a fine grid was able to confirm and provide explanation of the high back–
side heat-transfer rate. Without a doubt, there is some disparity between the two-
dimensional and three-dimensional simulation results. For example, the fluctuating
lift is one parameter that is incorrectly predicted by the two-dimensional model
(Norberg 2003; Dong & Karniadakis 2005). Nevertheless, many other thermal and
flow parameters are closely approximated by the two-dimensional model. The objective
of the present numerical simulation was to provide a complete set of highly consistent
two-dimensional results, rather than to compare the two-dimensional and three-
dimensional models. In this way, the validity and limitation of the two-dimensional
model can be judged fairly in the future, when three-dimensional results of
comparable accuracy become available for comparison in the same range of Reynolds
numbers.
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Figure 1. Wake behind a heated circular cylinder at dimensionless time t = 70 for Reynolds
number Re = 1000. The flow approaches the cylinder from the right to the left in the figure.
The computational grid in cylindrical coordinates is shown as an overlay.

2. Formulation
The numerical computations were conducted for two-dimensional incompressible

flow using a streamfunction and vorticity formulation. The calculations were carried
out using transformed coordinates. The relationships between the transformed
coordinates ξ, η and the polar coordinates r, θ are

r = a eπξ , θ = πη. (2.1)

A uniform grid in the transformed coordinates corresponds to a non-uniform grid
in the physical coordinates, as shown in figure 1. A fine grid in the vicinity of the
cylinder ensures accurate calculations of the gradients on the surface of cylinder,
which are necessary for prediction of the boundary-layer separation and the heat flux
from the surface of the cylinder.

In the transformed coordinates, the vorticity ω is related to the streamfunction ψ

through the Poisson equation

∂2ψ

∂ξ 2
+

∂2ψ

∂η2
= gω, (2.2)

where g = π2 e2πξ is the Jacobian of the transformation. The velocity components in
the transformed coordinates are

V = −∂ψ

∂η
, U =

∂ψ

∂ξ
. (2.3)
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Re D (m) T̃ wall (◦C) T̃ ∞ (◦C) U∞ (m s−1) Pr Pe Im Jm

200 0.0254 74.0 24.0 0.12 0.71 142 70 140
1000 0.0350 74.0 24.0 0.44 0.71 710 150 300
5000 0.0500 100.0 24.0 1.54 0.71 3550 340 680
8290 0.0500 100.0 24.0 2.55 0.71 5886 430 860

15 550 0.1000 100.0 24.0 2.40 0.71 11 040 600 1200

Table 2. Parameter values and conditions for the numerical simulations.

The advection–diffusion equations for the vorticity ω and the temperature T in the
transformed coordinates are

g
∂ω

∂t
+

∂(ωU )

∂η
+

∂(ωV )

∂ξ
=

∂

∂ξ

(
2

Re

∂ω

∂ξ

)
+

∂

∂η

(
2

Re

∂ω

∂η

)
, (2.4)

g
∂T

∂t
+

∂(T U )

∂η
+

∂(T V )

∂ξ
=

∂

∂ξ

(
2

Pe

∂T

∂ξ

)
+

∂

∂η

(
2

Pe

∂T

∂η

)
, (2.5)

where T is the temperature excess relative to the ambient temperature. The
Reynolds number Re = U∞D/ν and the Peclet number Pe=U∞D/α are defined in
terms of the diameter of the cylinder D and the upstream velocity U∞. However,
the dimensionless time t =U∞ t̃/a, the dimensionless vorticity ω = ω̃a/U∞ and the
dimensionless streamfunction ψ = ψ̃/(U∞a) are based on the radius of the cylinder a.

The numerical solution of the Poisson equation was obtained using a Hermitian
scheme. Daube & Ta Phouc Loc (1978) used this scheme to calculate the flow around
an impulse-started half-cylinder and obtained a vorticity distribution in near perfect
agreement with the laboratory observations by Coutanceau & Bouard (1979) and
Coutanceau & Defaye (1991). They reproduced the observed details of the secondary-
eddy and forewake phenomena. Their computations, however, were limited to the flow
past a half-cylinder over a very short period of time after an impulsive start and did
not include heat-transfer results. The present computation extended the application
of this numerical scheme to heat-transfer calculations for a full cylinder at higher
Reynolds numbers.

Table 2 summarizes the conditions of the present numerical simulations. The fluid
around the cylinder is air, for which the molecular viscosity and thermal diffusivity
are temperature dependent. The temperature on the surface of the cylinder, Twall,
is uniform. Its values are given in the table. The conditions of these numerical
simulations were selected so that the results could be compared with the local heat-
transfer measurements on the surface of the cylinder for Reynolds numbers Re= 8290
and 15 550 by Schmidt & Wenner (1943). In Schmidt & Wenner’s experiments, the
surface temperature of a hollow brass cylinder was kept constant at 100 ◦C by the
condensation of water vapour on the inner surface of the cylinder, except for a narrow
instrumentation strip that was heated separately to nearly the same temperature
by electricity. The heat flux by radiation was deducted from their measurements.
Although the simulations are for an incompressible fluid, the density, viscosity and
heat conductivity are treated in the simulation as variable and temperature dependent.
The incompressible assumption is acceptable for the moderate range of Mach numbers
varying from Ma = 0.0001 to 0.04 in the present series of numerical simulations.
Buoyancy is also ignored in the numerical results presented in this paper. The effect
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of buoyancy is found to be negligible by comparing the results obtained between
simulations that were conducted with and without it.

3. Compact difference scheme
The Poisson equation for the streamfunction, (2.2), is solved numerically by a

compact-difference scheme, which treats the zeroth, first and second derivatives of the
streamfunction as independent variables:

ψn
i,j ,

(
∂ψ

∂ξ

)n

i,j

,

(
∂ψ

∂η

)n

i,j

,

(
∂2ψ

∂ξ 2

)n

i,j

,

(
∂2ψ

∂η2

)n

i,j

. (3.1)

These independent variables are obtained; from a set of algebraic equations, to
the fourth order of accuracy, using an alternate-direction implicit (ADI) method as
described in Ta Phouc Loc (1980) and in Bouhairie (2005). The temporal accuracy of
the ADI scheme is second order. The calculations of the derivatives are implemented
by a relaxation method in two sweeps. In the first sweep, the η-derivatives are
determined by the Poisson equation

λkhψ
k+1/2
i,j −

(
∂2ψ

∂η2

)k+1/2

i,j

= −gi,jω
n
i,j +

(
∂2ψ

∂ξ 2

)k

i,j

+ λkhψ
k
i,j , (3.2)

and by a Hermitian relation in the η-direction,(
∂2ψ

∂η2
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In the second sweep, the ξ -derivatives are determined again by the Poisson equation

λkvψ
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and by the Hermitian relation in the ξ -direction,(
∂2ψ

∂ξ 2

)k+1
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The first derivatives, for the velocity components U and V in (2.3), are also determined
in two sweeps using the following Hermitian relations:(

∂ψ

∂ξ

)k+1

i−1,j

+ 4

(
∂ψ

∂ξ
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i,j

+
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The relaxation coefficients λkh and λkv are introduced into the Poisson equations in
the iteration for the derivatives.

The numerical solution starts with an irrotational flow. Initially, the vorticity is zero
in the interior. However, the wall vorticity at the surface of the cylinder is not zero.
As required by the no-slip boundary condition, this wall vorticity ωn+1

1,j on the surface
of the cylinder is determined by the following third-order condition (Ta Phouc Loc &
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Bouard 1985):

12

(	ξ )2
ψn+1

2,j − 6

(	ξ )

(
∂ψ

∂ξ

)n+1

2,j

+

(
∂2ψ

∂ξ 2

)n+1

2,j

= g1,jω
n+1
1,j + O(	ξ 3). (3.8)

Accurate evaluation of this wall vorticity ensures that the boundary-layer separations
are correctly determined by the simulations. Once the wall vorticity ωn+1

1,j has been
determined by (3.8), the subsequent diffusion of this wall vorticity into the interior is
determined by the advection–diffusion equation (2.4). A number of numerical schemes,
based on the finite-volume formulation, have been employed to solve the advection–
diffusion equation. Bouhairie (2005) gave details of the various numerical schemes
and the numerical results obtained for each scheme in his PhD thesis. Only the reliable
results obtained by the QUICK method (Leonard 1979; Hayase, Humphrey & Gerif
1992) are presented in this paper.

4. Computational grid and accuracy
The computation grid must have enough resolution within the viscous boundary

layer that the heat-transfer rate can be computed accurately from the temperature
gradient at the wall. The higher the Reynolds number, the thinner is the viscous layer
and, subsequently, the finer is the requirement for the computation grid. The first cell
of the computation grid next to the surface of the cylinder is rectangular in shape.
The dimensions of this cell in the radial direction and in the tangential direction are
selected to be equal to the front-stagnation-point (FSP) boundary-layer displacement
thickness:

(	r)1 = a(	θ)1 = δ1. (4.1)

The FSP displacement thickness,

δ1 � 0.67√
Re

a, (4.2)

is a viscous length scale that is inversely proportional to the square root of
the Reynolds number (Schlichting 1979). The linkage of the grid with the FSP
displacement thickness ensures that the simulations correctly capture the flow
characteristics on the surface of the cylinder. Many previous calculations of the
flow used computational grids listed in columns 6–8 of table 3 which did not follow
the rule given by (4.1). The result was a loss of resolution when a grid coarser than
δ1 was used at higher Reynolds numbers.

Figure 1 shows the computation grid used in a flow simulation at Reynolds
number Re = 1000. In the transformed domain, defined by 0<ξ <ξ∞ and 0 < η < 2,
the computation was conducted using a uniform grid of mesh size

	ξ =
ξ∞

Im

, 	η =
2

Jm

. (4.3)

Since the mesh size in the polar coordinates and the mesh size in the transformed
coordinates are related by

(	r)1 � aπ	ξ � δ1, 	θ = π	η, (4.4)

the number of computational grid points is

Im =
ξ∞

	ξ
= π

a

δ1

ξ∞ = 4.7
√

Re ξ∞, Jm = 2Im. (4.5)
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Authors Dimension Re θs (deg.) St Grid (	r)1 a(	θ )1

Present simulation 2D 200 111 ± 2 0.190 70 × 140 δ1 δ1

results 300 110.5 ± 4.5 0.200 82 × 164 δ1 δ1

1000 102 ± 9 0.232 75 × 150 2δ1 2δ1

102 ± 8 0.224 150 × 300 δ1 δ1

103 ± 8 0.222 300 × 600 1
2
δ1

1
2
δ1

5000 90 ± 6 0.228 340 × 680 δ1 δ1

8290 92.5 ± 9.5 0.224 430 × 860 δ1 δ1

15 550 86.5 ± 6.5 0.210 600 × 1200 δ1 δ1

Chou & Huang (1996) 2D 1000 99.6 ± 6 0.220 129 × 121 1.2δ1 2.5δ1

40 000 83.1 ± 8 0.220 193 × 241 7.8δ1 4.9δ1

Thoman & Szewczyk 2D 200 116 0.150 � 24 × 36 0.25δ1 3.7δ1

(1969) 600 113 — � 24 × 36 0.25δ1 6.4δ1

40 000 83 0.170 � 24 × 36 0.25δ1 52.δ1

Persillon & Braza (1998) 2D 100 113.5 0.165 213 × 102 1.4δ1 1.4δ1

200 109.5 0.198 213 × 102 2.0δ1 2.0δ1

300 109.4 0.209 213 × 102 2.5δ1 2.5δ1

Persillon & Braza (1998) 3D 100 113.3 0.164 213 × 102 × 32 1.4δ1 1.4δ1

200 107.9 0.181 213 × 102 × 32 2.0δ1 2.0δ1

300 106.5 0.206 213 × 102 × 32 2.5δ1 2.5δ1

Table 3. Global parameters and computational grids of the present and previous simulations.
2D, two-dimensional grid; 3D, three-dimensional grid.

The calculations presented in this paper use ξ∞ =1, which sets the outflow boundary
at approximately 23 radii from the cylinder. Extending the boundary further from 23
radii to 180 radii produces no significant difference in the flow characteristics near
the surface of the cylinder (Bouhairie 2005). To assure stability of the numerical
calculation, the dimensionless time step in the calculations, 	t = U	t̃/a, is selected
so that the Courant number U	t̃/(	r)1 � 0.5.

Calculations were also carried out using a coarser grid and a finer grid at Reynolds
number Re = 1000. The results of this grid-refinement study are given in table 3 and
in table 5 in a later section. With two-fold and four-fold grid refinement, the changes
in the values of the parameters such as the Strouhal number, the angle of separation,
the Nusselt number, the front-to-back heat-transfer ratio etc. vary by only a few
percent. These results have given confidence to our criteria for grid selection.

5. Vorticity and temperature distributions
The sequence of the vorticity and temperature maps obtained from the numerical

computation at Re = 15 550 is shown in figure 2 for dimensionless times t =99.0, 99.5,
100.0. These maps illustrate the development of the unsteady viscous boundary layers
and the separation of the viscous layers from the surface of the cylinder. There are
many points of flow separation, and they are marked on the vorticity maps by the
arrows pointing to the vorticity zeros on the surface of the cylinder. The number of
zeros changes with time from 13 zeros at time t =99 to 15 zeros at time t = 99.5 and
then back to 13 zeros at time t = 100. The number of zeros increases by 2 whenever
an eddy is generated. The number decreases by 2 when an eddy is detached from
the surface. The eddies are defined by pairs of vorticity zeros on the surface of the
cylinder. The locations of these zeros change with time as the wake moves laterally
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Figure 2. Vorticity maps (left) and temperature maps (right) at (a) t = 99.0, (b) 99.5, (c) 100.0
for Re = 15 550. Positive vorticity is shown in red and negative in blue. The arrows mark the
points of zero vorticity on the surface of the cylinder. The color bars define the temperature
from T = 76 ◦C to T = 4 ◦C. The area where T < 4 ◦C is shown as white.

from side to side. The eddies are continuously generated and then detached from the
back surface of the cylinder. The release of vorticity into the wake is by detachment
of the eddies.

The thermal energy is released along thread-like pathways, which hereafter are
referred to as ‘flares’, at locations close to but not exactly at the points of zero
vorticity. The temperature maps in figure 3 show close-up views of the flares on the
back surface of the cylinder for four flows with Reynolds numbers Re= 1000, 5000,
8290 and 15 550. The width of the flares is defined between isotherms where the
temperature is equal to one-half the wall value. As marked by the two-way arrows in
these close-ups, the width of the flares is

w � 7δ1. (5.1)
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Figure 3. Flare-up of thermal energy (red) on the back surface of the circular cylinder for
Re= 1000, 5000, 8290 and 15 550. The thick arrow to the right indicates the magnitude of the
crossflow velocity. The width of the flare is indicated by the double-ended arrow, the length of
which is equal to seven times the FSP thickness.

The tangential velocity near the surface of the cylinder changes direction at the
points of flow separation, where the surface vorticity is zero, ∂vθ/∂r � 0. However, the
flare-up of thermal energy is associated with the tangential gradient of the tangential
velocity, ∂vθ/∂θ , which changes sign at locations that do not coincide with the
points of flow separation, where the vorticity is zero. On average, the number of
flow-separation points is approximately equal to the number of flares.

The circumferential distribution of the wall vorticity on the surface of the cylinder
obtained from the simulations is shown in figures 4(a–c) for Reynolds number
Re= 200, 5000 and 15 550. The eddies attached to the surface of the cylinder are
defined by the magnitude of the vorticity maxima and the location of the vorticity
zeros in these profiles. The magnitude of the vorticity maxima increases with the
Reynolds number. The number of zeros also increases with the Reynolds number.
For Re =200 (see figure 4a), the maxima occur in the viscous boundary layer, where
θ � 50◦ and 310◦. At this instant, t = 100, there are three locations where the vorticity
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Figure 4. Wall-vorticity profiles at time t = 100 for Re (a) 200, (b) 5000, and (c) 15 550. The
initial boundary-layer separation is indicated by arrows pointing to the first pair of vorticity
zeros. The front stagnation point is located at θ = 0◦ = 360◦.
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Figure 5. Angles of the initial boundary-layer separation. The solid symbols denote the
results of the numerical simulation while the open symbols denote laboratory measurements.

is zero. Two of the vorticity zeros occur at the extreme angles θs =110◦ and 250◦.
These are the locations associated with the initial separation of the viscous layer.
Only one vorticity zero occurs on the back surface, at θ � 175◦, at this time and for
this Reynolds number. At the higher Reynolds numbers of Re =5000 and 15 550
(see figures 4b and 4c), the wall vorticity at locations on the back surface can
become higher than the value along the side. The high vorticity intensity is due to a
steep tangential-velocity gradient, ∂vθ/∂r , within an unsteady viscous layer of small
thickness on the back surface. The viscous layers on the back are highly unsteady
and, unlike the boundary layer, they develop from the front but play the same role
in keeping the vorticity and thermal energy close to the wall. Separation of the
viscous layers occurs at the locations where the vorticity is zero. From now on in
this paper, ‘viscous layers’ are taken to be boundary layers on the back surface of
the cylinder. The term is generalized to describe the regions of thermal energy and
vorticity entrapment close to the surface of the cylinder, while ‘separations’ refers to
the disruption of these viscous layers from positions close to the surface.

6. Initial boundary-layer separation
The initial separation of the boundary layer is defined by the first pair of vorticity

zeros on the surface of the cylinder. The angle of this initial separation is θs , as
indicated in figure 4. The same angle is defined also by the arrows in figure 2. Since
the process of separation is asymmetric and unsteady, the point of this first vorticity
zero moves back and forth along the back surface. The angle θs on one side of the
cylinder is different from that on the other side. The angle also oscillates with time.
The range of this oscillation and the average value of the angle for Reynolds numbers
Re= 200, 1000, 5000, 8290 and 15 550 are shown in figure 5 and table 3. In the figure,
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the vertical lines define the range and the large solid symbols denote the averaged
value.

There are many previous experimental data available for comparison with the
present simulation results. In the laboratory experiments, the angle θs was the location
where the vorticity is on the average close to zero. It was difficult physically to measure
the vorticity at the wall with acceptable accuracy. Using a Stanton tube, Fage &
Falkner (1931) measured the near-surface velocities to find the intensity of the wall
friction. The point where the frictional intensity falls to zero defined the separation
of the boundary layer. They admitted that reliable measurements of the friction with
the Stanton tube could be obtained only when the boundary layer was not too thin
compared with the diameter of the Stanton tube. This condition was not satisfied for
flow with large Reynolds numbers. Grove et al. (1964) measured the pressure profile
on the cylinder surface using a manometer and located the point of separation by the
pressure gradient. They noted that the measurements were not entirely reliable since
the flows were unsteady at their range of Reynolds numbers, varying from Re =30
to 300. The measurements using the Stanton tube and a pressure tap connected to
the manometer gave only an average value.

Although flow separation may be defined at points where the wall friction is zero,
the location of this zero friction is not possible because the wall friction at a location
is zero only at one instant of time. The average of the wall friction over time is not
in fact zero anywhere on the surface of the cylinder. Son & Hanratty (1969) obtained
the wall friction by electrochemical measurements, which were more accurate than
calculations based on measured pressure profiles. However, since the average of the
wall friction was non-zero, they had to locate the separation angle at the point where
the average friction is a minimum. Despite the improved accuracy in their friction
measurements, the angle at minimum friction was not determined with certainty, since
this minimum is not sharply defined but occurs over a range of angles.

In numerical simulations, the first point of zero vorticity accurately defines the
boundary-layer separation. However, the location of this first vorticity zero depends
on the numerical method and the resolution of the numerical grid. The earlier simula-
tion of the flow at Re =200 to 40 000 by Thoman & Szewczyk (1969) was based
on first-order upwinding and a relatively coarse grid (see table 3). The mesh size of
the cell next to the wall used by Thoman & Szewczyk (1969) was (	r)1 � 1

4
δ1 and

	θ = 10◦. The thickness of their highly elongated cell is sufficiently small. However,
the lateral dimension of this cell in the θ-direction was fixed at 10◦, which is exceed-
ingly large compared with the desired a(	θ)1; this would be a much smaller value,
360◦/1880 � 0.2◦, if the calculation were carried out using the present method at
Re = 40 000.

The results of the present simulation are in agreement with the recent results of
Chou & Huang (1996). This two-dimensional simulation by Chou and Huang was
conducted using a curvilinear grid of comparable resolution. At Reynolds number
Re = 40 000, the number of cells in our refined grid would be 940 × 1880. This may
be compared with the grid of 193 × 241 used by Chou & Huang (1996) and the grid
of 24 × 36 used by Thoman & Szewczyk (1969). Three-dimensional direct numerical
simulation of the flow was carried out by Persillon & Braza (1998) up to Re = 300.
They also conducted two-dimensional simulations using a grid of similar resolution
to ours. Their two-dimensional, as well as their three-dimensional, results can be seen
from figure 5 to agree with the present numerical results. In their Reynolds number
range, varying from Re =100 to 300, there was a three-dimensional effect on the
drag coefficient and the Strouhal number. However, the three-dimensional effect on
the initial angle of the boundary-layer separation is apparently not as significant.
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The difference between the two-dimensional and three-dimensional simulations is
	θs = 0.2◦ for Re = 100, 	θs =1.6◦ for Re= 200 and 	θs =2.9◦ for Re= 300. The
two-dimensional simulations give slightly higher values in this range of Reynolds
numbers (see table 3).

7. Eddies on the surface of the cylinder
The number of vorticity zeros defines the points of separation and the number of

eddies on the surface of the cylinder. This information is given in panel (a) of figures 6–
9 for Re = 1000, 5000 and 15 550. The loci of the vorticity zeros trace lines over space
and time in these figures. The outer envelope of the loci defines the initial angle of the
boundary-layer separation, θs(t), which is a function of time. The frequency associated
with this initial separation, f , is determined by counting the number of oscillations
of this outer envelope over the period of time from t = 30 to 100. The dimensionless
number of this primary frequency is the Strouhal number St = f D/U∞, which as
shown in figure 10 is a function of the Reynolds number. In the Reynolds-number
range from Re =200 to 300, the present simulation results are in agreement with
the experimental data and are in between the two-dimensional and three-dimensional
simulation results of Persillon & Braza (1998). The frequency obtained from the two-
dimensional simulation by them is higher than the average of the experimental data.
The frequency obtained from the three-dimensional simulation by Persillon & Braza
(1998), however, was slightly lower than the average of the experimental data in this
range of the Reynolds number. Persillon and Braza attributed the drop in frequency
around Re = 200 to a three-dimensional effect. At higher Reynolds numbers, in the
range between Re = 1000 to 40 000, both the present numerical simulation and the
two-dimensional simulation of Chou & Huang (1996) give slightly higher values than
the average of the experimental data. However, the Strouhal number obtained from
the present simulation for Reynolds number Re =15 550 is equal to the average of
the experimental data.

Due to phase jitter, the frequency of oscillation is not exactly constant. The
present calculations of the Strouhal number were based on averages over a period of
time (t � 30 ∼ 100) corresponding to approximately nine cycles of oscillations. This
small number of cycles causes errors that can be comparable with the scatter of
the experimental data. Nevertheless, the trend of the present simulation results is
consistent with experiment and with other numerical results as shown in figure 10.

At high Reynolds numbers, there are many vorticity zeros between the initial angles
of separation. The population number of these vorticity zeros on the surface of the
cylinder at each instant of time is counted from the loci shown in panel (a) of
figures 6–9. This number, nω, changes with time as shown in figure 11. The change
in this number nω with time is typically 2 units. An increase in the number by 2
signals the creation of an eddy, while a decrease by 2 signals the detachment of an
eddy from the wall. The total number of eddies attached to the wall is nE = nω − 1.
Over the period from times t = 30 to 100, the averaged numbers of the vorticity zeros
are nE = 6.5 − 1, as shown in figure 11(a), for Re= 1000 and nE = 14.1 − 1, as shown
in figure 11(b), for Re = 15 550. This eddy population number nE increases with the
Reynolds number, as shown in figure 12(a). The data in the figure approximately fit
the relation

nE � 0.107Re1/2. (7.1)
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194 S. Bouhairie and V. H. Chu

250

(a)

(b)

(c)

200

150

100

250

200

150

100

95

90

85

80

70

75
Nu

60  

65

55
0 20 40 60 80 100

Time

Figure 9. (a) Loci of the vorticity zeros, (b) loci of the Nu minima and maxima and
(c) the circumferential average Nusselt number Ñu vs. time at Re= 15 550.
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The average spacing between eddies is the arclength πa divided by the population
number nE . Since δ1 = 0.67aRe−1/2,

λE =
πa

nE

� 44δ1. (7.2)

According to this equation the space between eddies, λE , is approximately equal to
44δ1.

The eddy-detachment frequency fE also increases as the population number nE;
both increase with the Reynolds number. The dimensionless number corresponding to
this eddy-detachment frequency is the eddy Strouhal number, StE = fED/U∞, which
increases with the Reynolds number, following approximately the linear relation

StE � 0.000 735 Re, (7.3)

as shown in figure 12(b). This eddy Strouhal number StE is the result of all eddies
large and small, detached from the surface. At high Reynolds numbers, the Strouhal
number of the main eddy approaches the asymptotic value St � 0.2, as shown in
figure 10. However, the eddy Strouhal number of all detached eddies, StE , increases
with Reynolds number without bound. Equation (7.3) may be rewritten in the form

fEν

U 2
∞

� 0.000 735, (7.4)

which suggests that the detachment frequency of the eddies depends on the viscous
time scale ν/U 2

∞ and not on the size of the cylinder. At high Reynolds numbers, the
vorticity is trapped in the viscous layers close to the wall. The release of the vorticity
through the detachment of eddies from the wall is a localized process that may not
depend on the size of the cylinder.



196 S. Bouhairie and V. H. Chu

20 40 60 80 100

5

10

15

20

25

30

nω

Time

(a) Re = 1000

(b) Re = 15550

20 40 60 80 100

5

10

15

20

25

30

nω

Figure 11. Variation in the number of vorticity zeros with time for two flows, with Reynolds
number (a) Re= 1000 and (b) Re= 15 550. The averages over the period from t = 30 to 100
are nω = 6.7 for Re= 1000 and nω = 14.1 for Re= 15 550.

8. Nusselt number and thermal-boundary-layer thickness
The release of thermal energy follows a similar process to the vorticity. The thermal

energy is trapped in the viscous layers close to the wall and subsequently released by
the detachment of eddies from the wall. The heat flux from the wall of the cylinder is

q = −k

(
∂T

∂r

)
r=a

= −k
T∞ − Tw

δT

, (8.1)

which is the product of the heat-conduction coefficient k- and the temperature gradient
at the wall, (∂T /∂r)r=a . The length scale of this heat flux is the thermal-boundary-layer
thickness

δT =
T∞ − Tw

(∂T /∂r)r=a

, (8.2)

which is defined by the temperature difference across the layer, Tw − T∞, and the
temperature gradient at the wall. The dimensionless parameter of the heat flux q is
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the Nusselt number,

Nu =
qD

k(Tw − T∞)
=

D

δT

, (8.3)

which may be interpreted as a length-scale ratio of D and δT . Figures 13(a), (b) and
(c) show the circumferential profiles Nu(θ) of this Nusselt number obtained from the
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Figure 13. Circumferential profile of the Nusselt number at the instant of time t = 100 for
Reynolds numbers (a) Re= 200, (b) 5000, (c) 15 550.

simulations at one instant of time, t =100, for Reynolds numbers Re = 200, 5000 and
15 550. The maxima and the minima of these profiles define the thermal structure on
the surface of the cylinder. The maxima are associated with the steep temperature
gradient in the viscous layer. The minima are due to the flares of thermal energy,
which are narrow pathways directed away from the wall, as shown in figure 3. The
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Overall Nu Stagnation Nus

3D 2D Exp Exp BL Exp R
Re θNumin

X&K K E&D S&W F S (%)

200 132◦ ± 4◦ 6.55 8.3 6.58 12.7 — 13.4 14.0 13.2
500 — 12.5 11.6 — — 22.1

1000 118.5◦ ± 6.5◦ 14.7 14.3 26.5 — 30.0 31.3 21.0
3900 — 50.0 35.7 61.8
5000 103.5◦ ± 5.5◦ 37.7 36.4 65.0 — 67.2 70.0 31.1
8290 101.5◦ ± 7.5◦ 51.4 49.3 84.2 91.3 89.5 90.1 34.8

15 550 95.5◦ ± 6.5◦ 74.8 71.9 115 119 118 123 40.5

Table 4. Heat-transfer parameters obtained from the simulations and the experimental
observations for comparison. The bold-face values are the results of the present calculations.
Exp, experiment; 2D, two-dimensional; 3D, three-dimensional; BL, boundary-layer; X&K, Xia
& Karniadakis (1997); K, Karniadakis (1988); E&D, Eckert & Drake (1972); S&W, Schmidt
& Wenner (1943); F, Frossling (1958); S, Squire (1938).

population number of the flares on the back surface, nF , is determined by counting
the number of minima in these profiles (see figure 12).

9. Front-stagnation heat transfer
One location of the Nusselt-number maxima occurs at the cylinder’s front

stagnation point (FSP). As shown in figures 13(a)–(c), the values of the Nusselt
number at the FSP are Nus = 12.7, 65.0 and 115, for Reynolds numbers Re = 200,
5000 and 15 550, respectively. Table 4 and figure 14 summarize the data obtained
for Nus from the present simulations and the previous simulations and experiments.
The boundary-layer calculations by Frossling (1958) give values 3 %–6 % higher than
those of the present results. The laboratory measurements by Schmidt and Wenner
(1943) of Nus at Re =8390 and 15 550 also give values that are slightly higher, about
6 %. On the whole, the simulation results and the experimental data fit the formula

Nus = 0.92Re1/2 (9.1)

for the present range of Reynolds numbers. Such a relation with the Reynolds
number suggests that the heat-transfer rate is proportional to the FSP thickness δ1.
Since δ1 = 0.67aRe−0.5,

Nus =
D

(δT )s
= 0.616

a

δ1

. (9.2)

According to this formula, the thermal boundary-layer thickness at the FSP is

(δT )s = 3.25δ1. (9.3)

Since the wall-mesh sizes are (	r)1 = a(	θ)1 = δ1, the thermal structures are resolved
in the present simulations by approximately three nodes within the boundary layer.
Most previous computations used coarser grids than the one used in the present
simulations. Table 3 summarizes the numerical resolutions in the various numerical
simulations.

10. Heat transfer on the back surface
The local Nusselt number is quite variable both in time and space. At high Reynolds

numbers, the heat-transfer rate on the back surface can become greater than the FSP
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Figure 14. Nusselt number at the front stagnation point, Nus , as a function of the Reynolds
number Re. The solid symbols denote the numerical results and the open symbols the
experimental data. The dashed line is (9.1).

value. As shown in figure 13(c) for Re= 15 550, one maximum on the back surface
is Nu = 190, which is 65 % higher than the FSP value of Nus = 115, at time t = 100.
The heat transfer on the back surface is highly unsteady; however, the available
experimental data are based on time-averaged measurements. Figure 15 shows the
time-averaged Nu profiles obtained from the present simulations for two Reynolds
numbers, Re= 1000 and 5000. The figure also shows the first pair of minima in these
profiles due to the initial separation of the boundary layer. The angular positions of
this first pair of minima, θNumin

, obtained from the simulations, are shown, together
with the experimental data for comparison in figure 16. These minima move back
and forth over a range of angular displacement, as thermal energy is released in an
unsteady manner from the surface of the cylinder. The vertical lines passing through
the solid symbols in the figure define the range of these movements. The θNumin

data
in figure 16 follow a similar trend to the data for θs in figure 5. However, the angle
θNumin

is greater than θs because the flares are located on the downstream side of the
flow separations.

Eckert & Soehngen (1952) and Schmidt & Wenner (1943) measured the local
distribution of the heat-transfer coefficient around the cylinder circumference. Their
data are given in figures 17(a)–(c) and may be compared with the time-averaged
profiles obtained from the present simulation for Re = 200, 8290 and 15 550, respec-
tively. The pattern obtained from the present simulation is reasonably aligned with
the observations at Re = 200. It is not in perfect agreement with the experimental
data at the higher Reynolds numbers. This discrepancy between the simulations and
experiments could be due to the disturbances produced by the instrumentation panel
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Figure 15. Time-averaged Nusselt number obtained over a period of time from t = 30 to
t = 100 for two Reynolds numbers, (a) Re= 1000 and (b) Re= 5000.

in Schmidt & Wenner’s (1943) experiment, resulting in their admitted measuring
error. The discrepancy could also be partly explained by the buoyancy effect and
by three-dimensional motions, which have been ignored in the present simulation.
The cylinder in Schmidt and Wenner’s experiment was oriented with its axis in the
vertical direction. The flow induced by buoyancy may have disturbed the boundary
layer, and that could explain the higher FSP heat-transfer rate and the earlier
boundary-layer separation in the experiment. Despite the discrepancy, the general
pattern of the simulation profiles is consistent with the experimental observation.
The most remarkable features of the simulated profiles are the sharp peaks that
occur immediately downstream of the initial separation, as marked by the arrows in
figure 17. These peaks were not detected by Schmidt & Wenner (1943) at the present
Reynolds numbers of Re= 8239 and 15 550 but were observed in their experiments at
higher Reynolds numbers. According to the measurements by Schmidt and Wenner
at higher Reynolds numbers, the Nusselt numbers at the sharp peaks are Nusp = 448,
660 and 1377 for Re =170 000, 257 000 and 426 000, respectively. These peak values
on the back surface, obtained from the time-average profiles, may be compared with
the respective values Nus = 443, 500 and 716 at the FSP. The peak values on the back
surface are high compared with the values on the FSP despite the smoothing effect
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Figure 16. Separation angles based on the first pair of Nu minima. The open symbols denote
the results obtained from laboratory measurements by Schmidt & Wenner (1943). The solid
symbols denote the location of the heat-transfer minimum obtained from the numerical
simulation.

of the time averaging. The intensity of the peaks becomes still higher with increasing
Reynolds number. This trend is correctly predicted by the two-dimensional models.

11. Circumferential and overall averages
The circumferential average Ñu is obtained by integrating the local Nu over the

surface of the cylinder:

Ñu =
1

2π

∫ 2π

0

Nu(θ) dθ. (11.1)

Owing to the wake oscillation, this circumferential average Ñu is a function of time.
The variations in Ñu with time is shown in panel (c) of each of figures 6–9, for
Re= 100, 5000, 8290 and 15 550, respectively. The averaging of these circumferen-
tial averages over time, from t = 30 to 100, gives the overall averages Nu =(t2 − t1)

−1∫ t2=100

t1=30
Ñu dt . The results of the present simulations are as follows: Nu= 6.55, 14.7,

37.7, 51.4 and 74.8 for Re= 200, 1000, 5000, 8290 and 15 550, respectively. Most
experiments in the past were conducted to measure this overall Nu. The data are
summarized in table 4 and plotted in figure 18. Also included in the figure, for
comparison, is the following relation, recommended by Eckert & Drake (1972) on the
basis of the experimental data:

Nu = (0.43 + 0.5Re0.5)Pr0.38 (11.2)
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Figure 17. Time-averaged Nusselt number obtained over the period t = 30 to t = 100 for
Re =200, 8290 and 15 550 with experimental data of Eckert & Soehngen (1952) and Schmidt
& Wenner (1943) for comparison.

for 1 <Re< 103 and

Nu = 0.25Re0.6Pr0.38 (11.3)

for 103 <Re < 105. The Nu obtained from the present two-dimensional simulations
covers a much wider range of Reynolds numbers than any previous simulation.



204 S. Bouhairie and V. H. Chu

102 103 104 105

Re

50

100

150

200

250

300

Nu——
Pr0.38

·

Eckert & Drake (1972)
Zukauskas & Ziugzda (1986)
Eckert & Soehngen (1952)
Schmidt & Wenner (1943)
Hilpert (1933)
(3D) Xia & Karniadakis (1997)
(2D) Karniadakis (1988)
(2D) Present simulation

Figure 18. Overall average Nusselt number Nu as a function of the Reynolds number. The
solid line is the formula of Eckert & Drake (1972) filled to the experimental data. The dashed
line is (11.4).

Despite the possibility of three-dimensional effects, the two-dimensional results are
in excellent agreement with the experimental data. They even appear to be in better
agreement than one of the three-dimensional simulation results for Re= 3900 obtained
by Xia & Karniadakis (1997). These authors conducted their simulations using a
finite-element mesh of 400 elements. The size of their mesh at the wall is unknown
and may not have been sufficiently small to resolve the steep-wall temperature and
velocity gradients at Reynolds number Re = 3900.

For the narrow range of Reynolds numbers in the present simulations, the overall
Nusselt number fits the formula

Nu = 0.66Re0.5Pr0.38, (11.4)

which is shown as a dashed line in figure 18. This dependence on Reynolds number to
the power one-half suggests an overall thermal-boundary-layer thickness in proportion
to δ1,

δT � 5.2δ1. (11.5)

However, if the Nusselt number depended on Reynolds number according to the
formula of Eckert & Drake (1972), the thermal-boundary-layer thickness would
depend on the Reynolds number as follows:

δT = 5.2δ1 for Pr = 0.7 and Re = 1000,

δT = 4.1δ1 for Pr = 0.7 and Re = 10 000.

δT = 3.3δ1 for Pr = 0.7 and Re = 100 000.

⎫⎬
⎭ (11.6)
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Over the wider range of Reynolds numbers from Re = 1000 to 10 000, the overall
thermal-boundary-layer thickness decreases slightly from δT = 5.2δ1 to 3.3δ1. These
thicknesses of the thermal boundary layer are of the same order of magnitude as
the flare thickness, which is estimated to be equal to 7δ1 (see figure 3). The thermal-
boundary-layer thickness at the FSP is fixed at (δT )s = 3.25δ1, (9.3). The overall
thickness tends to decrease with the Reynolds number and is thinner than the FSP
thickness if the Reynolds number is greater than Re = 100 000. This reduction in
overall thickness with Reynolds number suggests that the thermal boundary layer
on the back surface can actually become thinner than the layer at the FSP, if the
Reynolds number is sufficiently high.

12. Back-to-total heat-transfer ratio
The proportion of thermal energy released from the back side of the cylinder is

obtained by integration over the back surface. The demarcation between the front
and the back is defined by angles θ1 and θ2, which are the angles associated with
the first pair of Nusselt-number minima in the time-averaged profile Ñu(θ). With
this definition of the demarcation angle, the fraction of heat released from the back
relative to the total heat released is

R =

1

2π

∫ θ2

θ1

Ñu(θ) dθ

1

2π

∫ 2π

0

Ñu(θ) dθ

. (12.1)

Table 4 gives the value of this ratio. At the low Reynolds number of Re= 200, only
R = 13.2 % of the heat is released from the back side of the cylinder. The ratio
increases to 40.5 % at Re =15 550. Figure 19 shows how this ratio R varies with
the Reynolds number. The results of the simulations follow closely the trend of the
experimental data obtained by Schmidt & Wenner (1943). The proportion of the heat
flux coming from the back continuously increases with Reynolds number. The high
heat-transfer rate on the back is consistent with the instantaneous profiles of Nu
shown in figure 13. For Re = 15 550, the instantaneous peak heat-transfer rate on the
back side of the cylinder is 65 % higher than the value at the front stagnation point,
as shown in figure 13(c). This high instantaneous rate is associated with the steep
temperature gradient that occurs within a very thin viscous layer at this location and
time.

The present two-dimensional results for the back-to-total heat transfer ratio are
approximately 10 % higher than the data of Schmidt & Wenner (1943). These
high two-dimensional results are probably due to the absence of three-dimensional
structures in the two-dimensional model. The three-dimensional structure may thicken
the viscous layer and hence lower the heat-transfer rate from the back surface of the
cylinder.

13. Viscous and thermal layers on the back surface
After the initial flow separation, there remain thin viscous layers on the back surface

of the cylinder. The existence of such viscous layers is shown in figure 20 by the two
components of the velocity, vr and vθ , in the vicinity of the wall. The thick lines in the
figure denote the profile of the velocity components within the immediate vicinity of
the wall, i.e. at r = a+(	r)1. The thin lines denote components at eight computational
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Figure 19. Proportion of the heat transfer over the back of the cylinder. The computation
results are compared with the experimental data obtained by Schmidt and Wenner (1943).

cells away from the wall, i.e. r = a+
∑8

i=1(	r)i . The tangential component vθ increases
rapidly, becoming significantly greater than the radial component vr over a very short
distance from the wall. The radial component vr stays small except in regions close
to the flares. Figure 21 shows the tangential-velocity profiles for two locations. The
thin line is the vθ -profile on the side of the cylinder where θ = 60◦. The thick line
corresponds to the velocity profile at one location on the back of the cylinder at
θ = 210◦, where the Nusselt number is a local maximum. The thickness of the viscous
layer at this location on the back surface is actually less than that of the boundary
layer on the side. The thinness of the viscous layer is responsible for the high
heat-transfer rate at this location, where θ = 203◦, as shown in figure 13(c).

The viscous layers and flares are necessary elements to explain the observed high
heat-transfer rate from the back surface of the cylinder. Release of thermal energy
from the back surface by conduction requires a high thermal gradient that can only
be found in thin viscous layers. The rate of heat conduction is inversely proportional
to the thickness of a viscous layer. The higher the Reynolds number, the thinner the
viscous layer and therefore greater the heat transfer from the surface of the cylinder
to the viscous layer. At high Reynolds number, the thermal energy trapped in the
layer is released from it first by convection to the flares and subsequently through the
flares into the wake. This concept of thermal-energy release from the back surface
of the cylinder shows the complementary role between convection and conduction,
and the side-by-side existence of flares and viscous layers. The concept would not be
feasible if one existed without the other.
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Figure 20. Radial component vr and tangential component vθ of the velocity in regions
close to the wall at time t = 100 and Re= 15 550.

At Prandtl number Pr= 0.7, the viscous layers and the thermal layers are
comparable in thickness and both are proportional to the viscous length scale δ1,
which in turn is inversely proportional to Re1/2. The thermal energy is a passive tracer
that does not impact on the flow. The thickness of the thermal boundary layer may
change with the Prandtl number. The overall structures of the viscous layers and the
flares depend only on the Reynolds number. The relation between flares and eddies
will be explained further in subsequent sections.

14. Flares and eddies
The maxima and minima of the Nu profiles define the thermal structure on the

surface of the cylinder. The maxima flow towards the wall (vr < 0), while the minima
flow away from the wall (vr > 0). The thermal energy is confined within and is advected
along the viscous layers. The flares release the thermal energy from the viscous layers
by directing it away from the wall. The viscous layers and the flares on the surface
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Figure 21. Tangential velocity profile on the side where θ =60◦, denoted by the thin line and
the profile on the back where θ = 210◦, denoted by the thick line at the instant of time t =100
for Reynolds number Re = 15 550.

of the cylinder occur at the maxima and minima of the Nu(θ) profiles. Panels (b) of
figures 6–9 show the loci of these maxima and minima for Re= 1000, 5000 and 15 550,
respectively. The maxima and the minima trace lines over space and time in these
figures. At a given instant, the traces alternate between maxima and minima along
the cylinder wall and are enveloped by two outermost minima traces. The population
numbers of these maxima plus the minima, nNu, were obtained from the loci at each
instant and are plotted versus time in figure 22(a). In a similar manner, the number
of zeros associated with the tangential-velocity gradient, n∂θ vθ

, and the number of
zeros associated with the radial velocity component, nvr

, are plotted in figure 22(b),
(c) for comparison with the nNu plot in figure 22(a). All three numbers, nNu, n∂θvθ

and
nvr

, follow similar variations with time. The time-averaged values of these numbers at
Re= 15 550, over the period t = 30 to 100, are nNu =23.5, n∂θvθ

= 24.3, and nvr
= 24.9.

All three averages have similar dependences on the Reynolds number, confirming the
association of the flares with the zeros of ∂θvθ and the zeros of vr . The flares do not
occur at locations where ∂vθ/∂θ = 0 and vr = 0 but are located in regions between
these zeros.

Since flow separations are defined by the vorticity zeros, that is at locations where
∂vθ/∂r = 0, it can be shown that the flares do not occur at the same location as these
vorticity zeros. The tangential gradient of the tangential velocity ∂vθ/∂θ determines
the direction of the radial component of the velocity, vr . A thin boundary layer forms
at locations where the radial component of the velocity vr is directed toward the wall.
The flares of thermal energy occur at locations where the radial velocity is directed
away from the wall (vr > 0). These locations are also the locations where ∂vθ/∂θ < 0,
according to the continuity equation

vr

r
+

∂vr

∂r
+

1

r

∂vθ

∂θ
= 0, (14.1)
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Figure 22. (a) The number of Nu maxima plus Nu minima, (b) the number of vθ -gradient
zeros and (c) the number of vr zeros at Re= 15 550. The average numbers of maxima plus
minima over the period from t = 30 to 100 are nNu = 23.5 and n∂θ vθ

= 24.3 for Re= 15 550.

since in regions close to the wall the term ∂vr/∂r is negligibly small; therefore

vr � −∂vθ

∂θ
. (14.2)
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According to this relation, a negative tangential gradient ∂vθ/∂θ is associated with a
positive vr , which directs the flare of heat away from the wall. However, the viscous
layer is associated with a positive tangential gradient, ∂vθ/∂θ > 0, and the direction
of vr toward the wall.

The data obtained for the number of Nu maxima plus the minima, nNu, are plotted
versus the Reynolds number in figure 12(a). The data in the figure fit the relation

nNu � 0.191
√

Re. (14.3)

The population number of the flares is equal to one-half of this, i.e.

nF = 1
2
nNu � 0.0953

√
Re, (14.4)

because the flares are associated only with the Nu minima. The average spacing
between the flares, λF , is the arclength πa divided by the number of flares, i.e.

λF =
πa

nF

=
π

0.0953 × 0.67

0.67a√
Re

� 49.6δ1. (14.5)

According to this formula, the spacing between the flares is

λF � 50δ1, (14.6)

which is comparable with the average spacing of eddies, λE � 44δ1, (7.2). The average
spacing between the eddies and flares may be compared with the width of the flares,
w � 7δ1, (5.1). The FSP displacement thickness δ1 is a viscous length scale. The eddy
and flare spacings, λE and λF , and the flare width w are in proportion to this viscous
length scale.

The number nNu changes with time by 2 each time a flare is created or detached from
the back surface. The frequency of detachment of the flares is fF . The dimensionless
parameter associated with the flare-detachment frequency is the flare Strouhal number
StF = fF D/U∞, which follows an approximately linear relation with the Reynolds
number,

StF =
fF D

U∞
� 0.00065Re, (14.7)

as shown in figure 12(b). This relation for the flare Strouhal number follows essentially
the same functional relation as the eddy Strouhal number StE , discussed in § 7.
Although the locations of the flares do not coincide with the vorticity zeros, the
population number of the flares and the number of the eddies are essentially the same:
nF � nE . The flare-detachment and eddy-detachment frequencies are also the same:
StF � StE and fF ν/U 2

∞ � fEν/U 2
∞ � 0.00065–0.00074.

Table 5 summarizes the results obtained from the present simulations. The table
also includes calculation results for Re = 1000, repeated with a coarser grid and with
a finer grid. The effect of these grid changes is almost negligible, although the flare
Strouhal number StF is slightly affected. It should be noted that (7.1), (7.3), (14.4)
and (14.7) are tentative asymptotic relations derived from a small data set. The form
and the constants in these equations may have to be modified when more data are
obtained from future simulations of the flow at higher Reynolds numbers.

15. Summary and conclusions
The heat transfer from a circular cylinder into a crossflow is first by heat conduction
in the viscous layer on the back surface of the cylinder. The subsequent release of heat
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Re Grid (	r)1 θs θNu Nu Nus R St nE nF StE StF

200 70 × 140 δ1 111◦ ± 2◦ 132◦ ± 4◦ 6.55 12.7 13.2 0.190 4.09 2.00 0.36 0.00
1000 75 × 150 2δ1 102◦ ± 9◦ 120◦ ± 5◦ 14.7 26.8 20.5 0.232 6.46 4.54 1.50 0.91

150 × 300 δ1 102◦ ± 8◦ 119◦ ± 6.5◦ 14.7 26.5 21.0 0.224 6.52 3.39 1.54 0.48
300 × 600 1

2
δ1 103◦ ± 8◦ 119◦ ± 4◦ 14.6 26.4 21.3 0.222 6.52 3.40 1.58 0.42

5000 340 × 680 δ1 90.0◦ ± 6◦ 104◦ ± 5.5◦ 37.7 65.0 31.1 0.228 8.86 6.40 3.25 2.17
8290 430 × 860 δ1 92.5◦ ± 9.5◦ 102◦ ± 7.5◦ 51.4 84.2 34.8 0.224 10.1 8.43 6.47 4.87

15 550 600 × 1200 δ1 86.5◦ ± 6.5◦95.5◦ ± 6.5◦ 74.8 115 40.5 0.210 14.0 12.1 11.3 10.8

Table 5. Summary of numerical results of the present simulations. Notes a(	θ )1 = (	r)1.

into the wake is due to the detachment of eddies and flares from the back surface.
In the present simulations, these heat-transfer processes were computed using a two-
dimensional model for Reynolds numbers Re =200, 1000, 5000, 8290 and 15 550 and
Prandtl number Pr= 0.7. The mesh size was refined in proportion to a viscous length
scale δ1, to ensure uniform accuracy of the calculations for all Reynolds numbers.
The results of the simulations using the refined grid show that the local heat transfer
on the surface of the cylinder is highly variable in space and time. The heat-transfer
rate on the back surface can be at times significantly greater than the rate at the
front stagnation point. This high and localized heat-transfer rate is associated with
the formation of thin viscous layers on the back surface of the cylinder. The release
of vorticity and the release of thermal energy from these viscous layers by eddies and
flares are unsteady processes characterized by two sets of scales. The initial separation
of the boundary layer is characterized by the Strouhal number St = f D/U∞, which is
proportional to the diameter of the cylinder. The local release of vorticity and thermal
energy is characterized by eddies and flares of significantly higher frequencies, such
that fF ν/U 2

∞ � fEν/U 2
∞ � 0.00065–0.00074, which are related to the viscous time scale

ν/U 2
∞. At high Reynolds numbers, these eddy and flare frequencies are independent

of the diameter of the cylinder. The heat flares have an average spacing λF � 49δ1

and a width w � 7δ1. The thermal-boundary-layer thickness at the front stagnation
point is equal to (δT )s � 3.25δ1. However, a greater proportion of the thermal energy is
released from the back with increased Reynolds number. The overall thickness of the
thermal boundary layer decreases with Reynolds number from δT � 5δ1 at Re= 200 to
δT � 3δ1 at Re =15 550. The back-to-total heat-transfer ratio R increases from 13 %
at Re = 200 to 41 % at Re = 15 550. This continuous increase of R with Reynolds
number is simulated by the two-dimensional model, in agreement with experimental
observations.

The two-dimensional model is an approximation to the three-dimensional reality.
Given finite computational resources, the trade-off is between two-dimensional
calculations for high Reynolds numbers and three-dimensional computations at lower
Reynolds numbers. Two-dimensional simulations, although constrained, can in some
cases give important physical insight, whereas in other cases they can be misleading.
With some exceptions, the two-dimensional model closely simulates the trend of
the dependences a number of flow parameters on Reynolds number. The angles
of flow separations θs and θNumin

, shown in figures 5 and 16, are examples of this
trend. There are some differences. The most notable difference occurs at Re = 8290,
where θs = 92.5◦ ± 9.5◦ and θNumin

= 101.5◦ ± 7.5◦ in the two-dimensional model,
which may be compared with θs � 85◦ and θNumin

� 90◦ by experiment (respectively).
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Another example is the Strouhal number in figure 10. Starting from Re= 190–260 in
the wake transition regime, the two-dimensional model consistently overestimates
the Strouhal number (Williamson 1996). At Re = 8290, the Strouhal number is
St= 0.224 in the model and St � 0.195 ∼ 0.22 by experiment. There is a more complex
dependence of the drag coefficient on Reynolds number. The drag coefficient is slightly
underestimated by the two-dimensional model in the range of Reynolds numbers
from Re= 40 to 200 but slightly overestimated in the range from Re =200 to 5000
(Kawaguti & Jain 1966; Jordan & Fromm 1972; Collins & Dennis 1973; Bouhairie
2005). Beyond these ranges of Reynolds numbers, Singh & Mittal (2004) captured
the drag crisis using a two-dimensional model at Reynolds number Re � 2 × 105,
despite the presence of three-dimensional structures at those Reynolds numbers. The
fluctuating lift is the flow parameter that is the most sensitive to the presence of three-
dimensional flow structures. Out-of-phase vortex shedding can lead to cancellation of
the lift forces along the span and therefore to a reduction in the root-mean-square
value of the fluctuating lift (Norberg 2003). Although two-dimensional calculations
significantly overestimate the fluctuating lift, many existing high-Reynolds-number
vortex-induced vibration studies have been based on two-dimensional or quasi-two-
dimensional models and so it has been possible to produce qualitative agreement
with experiment using these models (Mittal & Balachandar 1995; Henderson 1998;
Al-Jamal & Dalton 2004; Willden & Graham 2004).

The heat-transfer parameters are less susceptible to three-dimensional variations in
the spanwise direction, for the range of Reynolds number considered. The present
two-dimensional simulations, using the refined grid giving uniform accuracy for
all Reynolds numbers, have closely captured the front-stagnation heat-transfer rate
(figure 14), the overall heat-transfer rate (figure 18) and the observed trend of the high
heat-transfer rate from the back surface of the cylinder at high Reynolds number
(figure 19). The two-dimensional simulations also resolved the viscous layers on the
back surface and the side-by-side existence of the flares as necessary mechanisms for
a high heat-transfer rate on the back surface of the cylinder. Without a doubt, there
are disparities between the results of the two-dimensional and three-dimensional
computations. However, accurate and systematic analyses of the two-dimensional
results, as presented in this paper, are necessary to facilitate future simulations and
measurements of two-dimensional and three-dimensional heat-transfer processes at
still higher Reynolds numbers.
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